BAB Matriks
Beberapa macam matriks khusus yang perlu kalian kenal adalah sebagai berikut.
1.3.1. Matriks Baris
Matriks baris adalah matriks yang hanya terdiri atas satu baris.
Misalnya:
P = [3 2 1]
Q = [4 5 –2 5]
1.3.2. Matriks Kolom
Matriks kolom adalah matriks yang hanya terdiri atas satu kolom, Misalnya:

1.3.3. Matriks Persegi
Matriks persegi adalah matriks yang banyak baris sama dengan banyak kolom. Jika banyak baris matriks persegi A adalah n maka banyaknya kolom juga n, sehingga ordo matriks A adalah n × n. Seringkali matriks A yang berordo n × n disebut dengan matriks persegi ordo n. Elemen-elemen a11, a22, a33, ..., ann merupakan elemen-elemen pada diagonal utama.
Misalnya:
A =
merupakan matriks persegi ordo 2.
B =
merupakan matriks persegi ordo 4.
Elemen-elemen diagonal utama matriks A adalah 1 dan 10, sedangkan pada matriks B adalah 4, 6, 13, dan 2.
1.3.4. Matriks Diagonal
Matriks diagonal adalah matriks persegi dengan setiap elemen yang bukan elemen-elemen diagonal utamanya adalah 0 (nol), sedangkan elemen pada diagonal utamanya tidak semuanya nol. Misalnya:
1.3.5. Matriks Identitas
Matriks identitas adalah matriks persegi dengan semua elemen pada diagonal utama adalah 1 (satu) dan elemen lainnya semuanya 0 (nol). Pada umumnya matriks identitas dinotasikan dengan I dan disertai dengan ordonya. Misalnya:
1.3.6. Matriks Nol
Matriks nol adalah suatu matriks yang semua elemennya adalah 0 (nol). Matriks nol biasanya dinotasikan dengan huruf O diikuti ordonya, Om × n. Misalnya:
1.4. Transpose Suatu Matriks
Transpose dari matriks A berordo m × n adalah matriks yang diperoleh dari matriks A dengan menukar elemen baris menjadi elemen kolom dan sebaliknya, sehingga berordo n × m. Notasi transpose matriks m n A × adalah
.
Contoh Soal 5 :
Contoh Soal 5 :
Jika A =
, tentukan AT dan ordonya.
Pembahasan :
Terlihat dari matriks A bahwa elemen baris ke-1 adalah 4, 2, dan –1, sedangkan elemen baris ke-2 adalah 3, 5, dan 6. Untuk mengubah matriks A menjadi AT, posisikan elemen baris ke-1 menjadi kolom ke-1 dan elemen baris ke-2 menjadi elemen kolom ke-2 sehingga diperoleh AT =
Ordo matriks A adalah 2 × 3, sedangkan ordo AT adalah 3 × 2.
2. Kesamaan Dua Matriks
Coba perhatikan bahwa :
4 = 4;
5 = 3 + 2;
9 = 33
Perhatikan juga dengan matriks berikut.
Matriks tersebut adalah dua matriks yang sama. Demikian juga dengan matriks berikut.
Tampak bahwa elemen-elemen seletak dari kedua matriks mempunyai nilai yang sama. Sekarang, apakah matriks
merupakan dua matriks yang sama? Coba selidiki, apakah elemen-elemen seletak dari kedua matriks mempunyai nilai yang sama?
Jika kalian telah memahami kasus di atas, tentu kalian dapat memahami definisi berikut.
Dua matriks A dan B dikatakan sama, ditulis A = B jika matriks A dan B mempunyai ordo yang sama dan semua elemen yang seletak bernilai sama. Elemen yang seletak adalah elemen yang terletak pada baris dan kolom yang sama.
Contoh Soal 5
Diketahui A =
, B =
, C =
, dan D =
.
Apakah A = B? Apakah A = C? Apakah A = D?
Pembahasan 5
Dari keempat matriks tersebut, tampak bahwa matriks A = B karena ordonya sama dan elemen-elemen yang seletak nilainya sama. Matriks A ≠ C karena meskipun ordonya sama, tetapi elemen-elemen seletak ada yang nilainya tidak sama, sedangkan A ≠ D karena ordonya tidak sama.
Contoh Soal 6
Tentukan nilai x, y, dan z jika
= 
Jawaban 6
Karena kedua matriks di atas sama dan elemen-elemen yang seletak bernilai sama, diperoleh x = 2, 12 = 3y atau y = 4, dan 2 – y = z atau z = –2. Jadi, x = 2, y = 4, dan z = –2.
3. Penjumlahan dan Pengurangan Matriks
3.1. Penjumlahan Matriks
Jumlah matriks A dan B, ditulis matriks A + B, adalah suatu matriks yang diperoleh dengan menjumlahkan elemen-elemen yang seletak dari matriks A dan B.
Misalnya:
Matriks
dapat dijumlahkan dengan matriks
.
Matriks
dapat dijumlahkan dengan matriks
.
dan seterusnya.
Secara umum, jika matriks A = [aij] dan B = [bij] maka matriks A + B = [aij] + [bij] = [aij + bij].
Bagaimana jika kedua matriks mempunyai ordo yang tidak sama?
Misalnya:
matriks
dengan matriks
. Dapatkah kedua matriks itu dijumlahkan?
Coba kalian diskusikan dengan teman-temanmu. Setelah melakukan diskusi tentang permasalahan di atas, tentu kalian dapat menyimpulkan sebagai berikut.
Syarat agar dua matriks atau lebih dapat dijumlahkan adalah mempunyai ordo yang sama.
Contoh Soal 7
Diketahui A =
, B =
, dan C =
Tentukan :
a. A + B;
b. A + C.
Penyelesaian 7
a. A + B =
b. A + C =
tidak dapat dijumlahkan karena ordonya tidak sama.
Contoh Soal 8
Carilah nilai x dan y yang memenuhi 
Terlihat dari persamaan matriks ini, diperoleh 6x + 1 = 3
↔ x = 1/3 dan 4y = 8 ↔ y = 2. Jadi, diperoleh nilai x = 1/3 dan y = 2.
3.2. Pengurangan Matriks
3.2.1. Lawan Suatu Matriks
Sebelum kita membahas tentang pengurangan matriks, terlebih dahulu akan kita bicarakan mengenai lawan suatu matriks.
Lawan suatu matriks A adalah suatu matriks yang elemen-elemennya merupakan lawan dari elemen-elemen matriks A. Secara lebih jelas, dari suatu matriks A = [aij] dapat ditentukan lawan matriks yang ditulis dengan –A sehingga –A = [–aij]. Misalnya sebagai berikut.
Jika A =
, lawan matriks A adalah –A = 
Jika B =
, lawan matriks B adalah –B = 
3.2.2. Pengurangan terhadap Matriks
Pengurangan matriks A dan B, ditulis A – B, adalah suatu matriks yang diperoleh dengan mengurangkan elemen-elemen yang bersesuaian letak dari matriks A dan B. Atau, matriks A – B adalah matriks yang diperoleh dengan cara menjumlahkan matriks A dengan lawan dari matriks B, yaitu A – B = A + (–B) dengan –B adalah lawan matriks B. Seperti halnya dengan penjumlahan matriks, syarat agar dua matriks atau lebih dapat dikurangkan adalah mempunyai ordo yang sama. Secara umum, jika
A = [aij] dan B = [bij] maka A – B = [aij] – [bij] = [aij] – [bij]
Contoh Soal 9
Diketahui A =
dan B =
. Tentukan A – B.
Jawaban 9
Cara 1:
Karena –B =
A – B = A + (–B) = 
Cara 2:
A – B = 
Contoh Soal 10
Hitunglah X jika diketahui 
Penyelesaian 10
X = 
3.3. Sifat-Sifat Penjumlahan Matriks
Agar kalian dapat menemukan sendiri sifat-sifat penjumlahan matriks, lakukan Aktivitas berikut.
Aktivitas :
Tujuan : Menemukan sifat-sifat penjumlahan matriks
Permasalahan : Sifat-sifat apakah yang berlaku pada penjumlahan matriks?
Kegiatan : Kerjakan soal-soal berikut di buku tugas.
1. Diketahui matriks A =
a. A + B c. (A + B) + C
b. B + A d. A + (B + C)
2. Untuk matriks A =
dan O =
, dengan ordo A adalah 2 × 3 dan ordo O adalah 2 × 3, apakah A + O = O + A? Apakah A + O = O + A berlaku untuk semua matriks yang dapat dijumlahkan?
3. Diketahui matriks A =
. Tentukan A + (–A) dan (–A) + A. Matriks apakah yang kalian peroleh?
Kesimpulan : Berdasarkan kegiatan di atas, sifat apa saja yang kalian peroleh?
Berdasarkan Aktivitas di atas dapat ditemukan sifat-sifat penjumlahan dan pengurangan matriks sebagai berikut. Jika A, B, dan C matriks-matriks yang berordo sama maka pada penjumlahan matriks berlaku sifat-sifat berikut.
a. A + B = B + A (sifat komutatif)
b. (A + B) + C = A + (B + C) (sifat asosiatif)
c. Unsur identitas penjumlahan, yaitu matriks O sehingga A + O = O + A = A.
d. Invers penjumlahan A adalah –A sehingga A + (–A) = (–A) + A = O.
Perhatian :
Untuk pengurangan matriks tidak berlaku sifat komutatif, sifat asosiatif, dan tidak mempunyai unsur identitas.
4. Perkalian Suatu Skalar dengan Matriks
4.1. Pengertian Perkalian Suatu Skalar dengan Matriks
Misalkan A suatu matriks berordo m × n dan k suatu skalar bilangan real. Matriks B = kA dapat diperoleh dengan cara mengalikan semua elemen A dengan bilangan k, ditulis :
Contoh Soal 11
Diketahui A =
dan B =
.
Tentukan :
a. 3A; b. 6B; c. –3A + 2B.
Jawaban 11
4.2. Sifat-Sifat Perkalian Bilangan Real (Skalar) dengan Matriks
Perkalian bilangan real (skalar) dengan suatu matriks dapat dilakukan tanpa syarat tertentu. Artinya, semua matriks dengan ordo sembarang dapat dikalikan dengan bilangan real (skalar). Misalkan A dan B matriks-matriks berordo m × n serta k1 dan k2 bilangan real (skalar), berlaku sifat-sifat berikut.
a. k1(A + B) = k1A + k1B
b. (k1 + k2)A = k1A + k2A
c. k1(k2A) = (k1k2) A
Bukti :
Cara membuktikan sifat ini dapat juga dilakukan sebagai berikut.
Misalkan matriks A = [aij] dan B = [bij], dengan i = 1, 2, ..., m
dan j = 1, 2, ..., n
k1(A + B) = k1([aij] + [bij])
= k1([aij + bij])
= [k1(aij + bij)]
= [k1aij + k1bij]
= [k1aij] + [k1bij]
= k1[aij] + k1[bij]
= k1A + k1B .............................................. (terbukti)
Komentar
Posting Komentar